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Structure and Madelung Energy of

Coulomb Clusters
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Graduate School of Natural Science and Technology and Faculty of Engineering,
Okayania University, Tsushimnanaka 3-1 - 1, Okayama 700-8530, Japan

Abstract. The ground state of the system of charged particles of one species confined by the three-
dimensional, isotropic, and parabolic potential is investigated by molecular dynamics simulations.
It is shown that, with the increase of the system size or the number of particles in the system N,
the ground state changes from the shell-structured system to the finite bcc lattice with reconstructed
surface. The critical value of the transition is estimated to be between N = 10

4 and N = 2 x 104.
The nucleation of the bcc lattice in the shell-structured cluster of 2 x 104 ions is observed.

INTRODUCTION

The systems of charges of one species confined in the external field provide us with
a stage where various properties of strongly coupled plasmas manifest themselves in
a simple and clear way. This system can be realized in the Penning-Malmberg [l]and
Paul traps [2, 3] and direct experimental observations of these properties have been an
excitement in recent years.

The ground state of these finite systems is strongly influenced by the geometry of
confinement. When the external potential is the spherically symmetric parabola and the
number of charges in the system is small, the structures such as icosahedron or spherical
shells give the ground state. When the system has sufficiently large number of particles,
it is expected that the ground state contains the bcc lattice as its main part: The ground
state of the (infinite) one-component plasma is the bcc structure.

In experiments, the bcc lattice at the central part has been observed for large cloud of
charges of the size more than 10' [4, 5]. The transition of the ground state from the shell
structure to the bcc lattice has been expected to occur at the system size of 2 x 10' or
larger [6]. It seems, however, that numerical simulations of larger systems may give more
precise information related to this transition. The purpose of this paper is to compare the
cohesive energy, sometimes called the Madelung energy, of these structures and show
that the transition occurs between N = 104 and .N - 2 x 10' by molecular dynamics
simulations of large clusters.
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PARAMETERS AND MADELUNG ENERGY

Let us here fix some notations for these clusters of charges. The Hamiltonian of our
system 11 is given by H = K + U, where hK is the kinetic energy

K" = 71 - ) , (I )
2I ((it

and U, the potential energy

U q- + kr . (2)
z>j =iI =

We define the Wigner-Seitz radius ou'. by

aws = (qi) (3)

and rewrite K and U into the form

K~m t.l/ 2 72(It' 2 (4)
K,= (,/ O '1= (d") 2

q K ) + N 2) (5)

Here the coordinates of particles are normalized by awjs" and the time is normalized by
tO.

In the fluid approximation where charges are regarded as continuum, the ground state
is the uniform distribution up to the radius I?

B = 2) = N1!:UaS (6)

with the density
3 ATI = ---- (7)

47-, q2'

We note that au1 ., defined by (3) is the average mean distance or the ion-sphere radius
in this approximation;

47, 3•
-- nq~.= 1. (8)

The potential energy of tile ground state in the fluid limit Ul ...... o is given by

3 2.. 3 ?2 = 9 3 (9-A -• + -- NA- -9Nr)1-. (9)5iR 10'.0'
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For given distribution of particles, we define the Madelung energy UAI by

UA, = U - U1,o0"o. (10)

At zero temperature, the behavior of the system is determined only by U. Therefore
(5) indicates that our system is characterized by only one parameter, the system size N.
At finite temperatures, we define the parameter F which represents the strength of the
Coulomb coupling by

F- q2q 2 
(11)kBTawjs"

The static properties of the system at finite temperatures are characterized by the param-
eter F and the system size N.

In the fluid approximation, the radius of uniform distribution oscillates with the
frequency

_ (3k) 1 /2 32 (m ,)"/ 2= 4r 2  1/2 (2

This frequency characterizes the macroscopic evolution of our system. One of character-
istic time scales of the microscopic evolution may be the time to move the mean distance
by thermal velocity aws/(h:BT/m)'/ 2 which is related to wp as

lp aws.' - (3F)11/2 (13)wv(kBT/?,r)1/2

NUMERICAL METHOD

Scaling with system size

We perform the molecular dynamics simulations. In this case, most of the computa-
tional time is consumed in the computation of the force on each particle and, with the
naive method, the computational time increases rapidly in proportion to N 2 in our sys-
tem where particles interact via the long-ranged Coulomb potential. We therefore adopt
the fast multipole method [7] which enables one to perform molecular dynamics simu-
lations of long-range force systems with the O(N)-scaling under controlled accuracy.

In the fast multipole method, the system is divided recursively into small cells and the
interaction between particles belonging to well-separated cells is computed based on the
multipole expansion and Taylor expansion. The number of smallest cells is 81""C and the
level is adjusted so that the smallest cell has about 8 particles on the average [7]. For
the system size of N = 10', we adopt the following parameters for the fast multipole
method: the level of 5, multipole expansion up to 26-th order, the Taylor expansion
up to 6th order, the well-separatedness of 2 (in the highest level, direct computation is
applied for nearest and next-nearest neighbor cells). In the course of molecular dynamics
simulation, the accuracy of the Madelung energy is kept at least for the first 4 digits and
the direct computation is performed for final relaxed states. The parameters for smaller
systems are also determined to give the accuracy at least of the same order.
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FIGURE 1. Madelung energy vs. system size for spherical hcc matter. Solid circles are the values with
relaxed surface and solid line is the interpolation. Open and gray circles are examples oIf values without
relaxation.
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The temperature is controlled by the Nos6-Hoover method. In order to keep the
homogeneity of the temperature, we attach multiple thermostats each controlling the
kinetic energy of about 5000 particles.

Initial conditions

For the system of the size N, the radius of particle distribution in the fluid-limit ground
state is determined as (6). The initial positions for the shell structure is given by the
uniform random distribution of particles within this sphere. The velocities are given
by the random distribution corresponding to the temperature specified by the value of
F. After annealing with F values between 100 and 150 for sufficiently many steps in
measures of the time scales (12) and (13), we slowly decrease the temperature.

Another set of initial conditions is the spherical cutout of the three-dimensional lattice
and the random distribution of velocities. In this case, the value of F is kept just above
the melting point (low temperature side) of the infinite lattice for a sufficiently long time
to allow the system to relax before slowly increased.

MADELUNG ENERGY OF RELAXED SPHERICAL BCC
MATTER

The spherical cutout of he bce lattice has rather high surface energy as is shown in Fig. 1.
When we anneal this system keeping the temperature near but below the melting point,
we obtain the spherical bcc matter with reconstructed surface. The Madelung energy of
the spherical bcc matter with reconstructed surface is also shown in Fig. I for the system
sizes N = 4544, 10,464, 20,288, 48,928, and 120,032. We observe that the relaxation
near the surface largely reduces the Madelung energy [8]. This is not expected from
the high values of the Madelung energy of unrelaxed spherical bcc matter. An example
of the structure is shown in Figs. 2 and 3. We observe that the relaxation has occurred
within a few layers at the surface

In the limit of very large values of N, the Madelung energy may have the form

Uhl = E00+ -NE, (14)Nq21-aw1s, N 1/3•

where the second term expresses the effect of the surface. When fitted to this form with
E, = -0.895929 (the Madelung energy of an infinite bcc solid), as shown in Fig. I by
the solid line, we have E, = 0.0605.

MADELUNG ENERGY OF SHELL-STRUCTURED SPHERICAL
CLUSTERS

Starting from the random distribution in the sphere of radius R given by (6), we first an-
neal the system at the temperature above the melting temperature of bulk one-component
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FIGURE 3. Radial distribution of particles in spherical bcc matter with relaxed surface for N
120.032.
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FIGURE 4. Particle distribution in shell I-structured spherical cluster with N =10.000 (left). Positions
of particles near the equatorial plane with Icj < 1.o. are pro~jected (right).
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FIGURE 5. Particle distribution in shell-structured spherical cluster with N =100,000.
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FIGURE 6. Projected positions of particles in the domain J< 2.f6a,7s for N = 100,000.
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plasma. The typical value of F is around 100. We then slowly decrease the temperature
of the system. The results are shown in Figs. 4, 5, and 6.

The values of the Madelung energy of the shell-structured spherical system of the size
N = 5 x 1W:, 10', 20288, and 10r are shown in Fig. 7. These values of the Medelung
energy can be interpolated by the formula

U'11 - -= -~ /30.89-0 + 0.0219N 3  (5)

The largest simulated system in reports was N = 2 x 101 [9].

TRANSITION OF THE GROUND STATE

The Madelung energies of the shell-structured clusters and of finite bce matters with
relaxed surface are compared in Fig. 7. We observe that, when the system size exceeds
the critical value N., the ground state changes from the shell-structured cluster to the
finite bce lattice with relaxed surface. The critical system sized is given by the crossing of
these Madelung energies and, in Fig. 7, is estimated to be around 101. We here note that
these Madelung energy, especially of shell structures, could become lower by annealing
the system repeatedly. The crossing, however, does not seem to be larger than 2 x 101.
Taking into account this possibility, we here conclude that

10' < N, < 2 x 101. (16)

NUCLEATION OF BCC LATTICE

The shell-structured cluster is still is a local minimum of the Madelung energy in the
domain where N > N, and the bcc lattice with relaxed surface is the global minimum.
Therefore it is not strange that the shell-structured cluster does not evolve to the bcc
lattice with relaxed surface in simulations. One may, however, expect that there is a
chance for the bcc lattice develops in the clusters of larger sizes. We here show one of
such examples.

The distribution of particles near the equatorial plane of the cluster of N = 20,288
is shown in the left panel of Fig. 8. We observe that there exist a part where we have
the structure with the straight planes rather than a curved plane in accordance with the
surface. The structure factor for the particles in this domain is shown in the right panel
of Fig. 8. We clearly see that the Bragg spots forms the fcc structure in the wave-number
space. We have confirmed that the spacing between Bragg spots agree with those of the
bce lattice with the average density of this cluster. This domain thus forms the bcc lattice
nucleated from the shell-structured cluster.
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FIGURE 7. Madelung energy of spherical coulomb system vs. N-1/ 3. Filled circles are relaxed spher-
ical bcc matter and squares are shell structured systems.

FIGURE 8. Bragg pattern from the central part (circled) of the shel I-structured cluster of N =20, 288.
Shown are consecutive three planes in reciprocal space where spots form the fcc lattice corresponding to
bcc structure in real space.
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CONCLUSIONS

It is shown that the ground state of the spherical coulomb clusters changes from shell-
structured clusters to the finite bcc lattice with relaxed surface at the system size between
10' and 2 x 10". In the shell-structured cluster of 2 x 101", the nucleation of the bcc lattice
is observed.

ACKNOWLEDGMENTS

This work has been partly supported by the Grants-in-Aid for Scientific Researches
of the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Nos.
08458109 and 11480110.

REFERENCES

t. Gilbert, S. L., Bollinger, J. J., and Wincland, D. J., Phys. Rev. Lett. 60, 2022 (1988).
2. Birkl, G., Kassner, S., and Walther, H., Nature (London) 357, 310 (1992).
3. Drewsen, M., Broderson, C., Hornckar, L. J., Hangst, S., and Schiffer, J. P., Phys. Rev. Lelt. 81, 2878

(1998).
4. ltano, W. M., Bollinger, J. J. , Tan, J. N., Jetenkovi6, B., Huang, X. -P., and Wincland, D. J., Science

279, 686 (1998).
5. Bollinger, J. J., Mitchell, T. B., Huang,X. -P., hano, W. M., Tan, J. N., Jelcnkoviý, B., and Wineland,

D. J., Phys. Plasmas, 7, 7 (2000).
6. Dubin, D. H. E., and O'Neil, T. M., Rev. Mod. Phys. 71, 87 (1999).
7. Greengard, L., and Rokhlin, V., J. Cornput. Phys. 73, 325 (1987).
8. Kishirnoto, T., Totsuji, C., Tsuruta, K., and Totsuji, H., Physics Letters A 281, 256 (2001).
9. Schiffer, J. P., Non-Neutral Plasma Physics II, edited by J. Fajans and D. H. E. Dubin, AlP Conference

Proceedings 331, New York, 1995, p. 191.

190


